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Abstract

In this paper, we discuss the symmetry number structure about line-1/2. We find that
using the symmetry characters of those structures we can give proofs of the number
Conjectures: Goldbach Conjecture Twins Prime Conjecture and Polignac’s conjecture and
the Riemann Hypothesis. In this paper, we also gave concise proofs of the Fermat’ Last
Theorem and the 3n + 1 conjecture.
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1. The Symmetry of P/2n and Prime Numbers Conjectures

We have P/2n number structure with points [ 0  1/2N+1  3/4   1] just as shown in Figure1.
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Figure 1: P/2n Number Structure with Points [0, 1/2N+1, 3/4, 1]
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N ~ (0, 1, 2, 3, 4, ....) All natural numbers

n ~ (0, 1, 2, 3, 4, ....) All natural numbers excepted 0

P ~ (0, 1, 2, 3, 4, ....) All prime numbers

And
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And we have

p0 P ~ (0, n] (n > 2)

And based on Bertrand-Chebyshev Theorem: When n > 2, there are at least a prime number between n and 2n.

pn  P ~ [n, 2n) (n > 2)

So we have
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2n = p0 + pn (n > 3)

This is the proof of Goldbach conjecture

And
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pn – p0 = 2

This is the proof of Twin Primes Conjecture

And we also have
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0 < 2k1 + 1 << n
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pn – p0 = 2(k2 – k1)

       max minmax

2 1
0 2 2 1 2 1 2 2 3

2

n
pn p k k n n

              

This is the proof of Polignac’s conjecture.

So we get a symmetry structure of P/2n as Figure 2

Figure 2: A Symmetry Structure of  P/2n about Line-1/2
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2. A Concise Proof of The Fermat’ Last Theorem

2.1. The Fermat’ Last Theorem

 , , , 0 2n n nx y z x y z n xyz n      has no solution.

n ~ (1, 2, 3, 4, 5, 6, ...) all the natural numbers excepted 0

The equivalent proposition of this conjecture is

1
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 , , , 0 2x y z n xyz n   has no solution.

We have

n ~ (1, 2, 3, 4, 5, 6, ...) all the natural numbers excepted 0
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And we can get the Figures as Figure 3.

Figure 3: D1/2 + 1/2 with Points 1/2-1/2n and 1/2-1/2n n ~ (0, 1, 2, 3, 4, ....) n = 1 and n = 2

In fact we have
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p, q is relatively prime and n ~ (1, 2, 3, 4, ...)

Figure 4: A Symmetry Structure of  
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about Line-1/2
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3. A Concise Proof of Collatz Conjecture

3.1. Collatz Conjecture

   

 

0 2
2

3 1 1 2

n
if n mod

f n
n if n mod

  
  

k N  f k (n) = 1
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Figure 5: A Symmetrical Structure of 4n about Line-1/2
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This is a concise proof of 3n + 1 Conjecture.

In fact, we can get a symmetrical structure of 4n about line-1/2 just as Figures 6 and 7.

Figure 6: A Symmetrical Structure of 4n about Line-1/2

Figure 7: A Symmetrical Structure of 4n about Line-1/2
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4. The Proof of Riemann Hypothesis

4.1. Riemann Zeta-Function
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S > 1 (s)  const

The trivial zero-points of Riemann Zeta-Function is –2n (n ~ 1, 2, 3, …)

Riemann Hypothesis: All the non-trivial zero-point of Zeta-Function   1Re 2s  .

We can get a symmetrical structure including all numbers about the line-1/2 as Figure 8.
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As the Figure 9. If we have zero points of (s) on line-1/2 ± a as

Figure 8: Riemann Hypothesis: All the Non-Trivial Zero Points of Riemann Zeta-Function are on the 1/2 Axis
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So we can get a zero point of (s) as

1
0 0 ,

2
zp bi b t b t R    

It is contrary to that 
1

2
s ti t R    is the first zero point on line-1/2

As the Figure 10. If we have zero points of (s) on line 1/2 ± a as
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zp a bi zp a bi     

Figure 9: A Symmetry Structure about Line1/2+/-a at the Zero Piont s = 1/2 + ti
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And 
1

2n ns t i t R   is the No. n zero point on line-1/2

1 1

1

2n ns t i t R    is the No. n+1 zero point on line-1/2

We can get a zero point of  (s) between s
n
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 on line-1/2  as
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1
0 ,

2 n nzp bi t b t b t R    

It is contrary to that s
n
 and s
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 are the adjacent zero points on line-1/2

So on complex plane, we can have the symmetry structure about the line-1/2 with zp = 1/2 ± a 
1
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show as on Figure 11.

Figure 10: A Symmetry Structure about Line 1/2+/-a at the Zero-Point s
n 
= 1/2 + t

n
i and s

n+1 
= 1/2 + t

n+1
i

Figure 11: Symmetry Structure about the Line-1/2 with zp = 1/2 ± a
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This is mean that there are no zero points on line-1/2 ± a 
1

0
2

a a R
    
 

Hardy and Littlewood (1914) give a proof that there are infinite zero points on line-1/2.

So we give a proof that all the non-trivial Zero points of Riemann zeta-function are on the Line-1/2.

This is the proof of Riemann Hypothesis.

5. The Symmetry Number Structure about Line-1/2 Including All Numbers

In fact, we have a symmetrical number structure about line-1/2 as Figure 12.

And we can get a symmetrical number structure about line-1/2 as Figure 13. We should call it Reimann dynamic
space.

Figure 12: Symmetry Structure about the Line-1/2 with zp = 1/2 ± 

Figure 13: Reimann Dynamic Space
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1 + i2 = 0

1 + 1/2 (i + 1) (i – 1) = 0
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N ~ (0, 1, 2, 3, 4, ....) All natural numbers

n ~ (1, 2, 3, 4, ....) All natural numbers excepted 0

P ~ (2, 3, 5, 7, ....) All prime numbers
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Figure 14: Reimann Dynamic Space with p1, p2, p3, p4
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p0 = 1/2(p3 + p4)

And we can get Figure 15.
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4. 4n = 2n + 2n = [(n – 1) + (3n + 1)]

Figure 15: Reimann Dynamic Space and Number Conjectures
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 (the proof of 3n + 1 conjecture)

And we have

1/2 = 1/2, 0 = 1/2 – 1/2, 1 = 1/2 + 1/2

1 + (+i)2 = 0

1 + 1/2(i + 1) (i – 1) = 0

1 1 1 1     

We called it L1/2± [0 1/2 1] and analytic continuation to 
  
   

 we can get Figure 16.
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N ~ (0, 1, 2, 3, 4, ....) All natural numbers

n ~ (1, 2, 3, 4, ....) All natural numbers excepted 0

We can get a matrix (n x n)
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The tr(A) = 1/2*n
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1 1 1 1     

p0 P < 2n, pn P > 2n

N ~ (0, 1, 2, 3, 4, ....) All natural numbers

n ~ (1, 2, 3, 4, ....) All natural numbers excepted 0

P ~ (2, 3, 5, 7, ....) All odd prime numbers
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And we find that

1. 1+ ei = 0 (Eulaer’s Formula)

     2 1 1
1 0, 1 1 1 0, 1 1

2 2N
i i i i i        

 21
1 0, 1 0

2
i ip i Ne e e      

N ~ (0, 1, 2, 3, 4, ....) All natural numbers

p ~ (3, 5, 7, ....) All odd prime numbers

2. 2(n + 1) = pn + p0

pn – 2n + p0 = 2
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And

2n – pn + p0 = 2

It is like the Euler’s Polyhedron Formula

We can get Figure 17. This is a symmetry number structure about line-1/2 including all numbers and the equivalence
structure of S + i is shown as Figure 18.
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Figure 17: The Symmetry of S+ i

Figure 18: The Equivalence Structure of S+ i
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